Atomic Structure

1.	List the principles of Dalton's atomic theory that are still considered true. What is the one principle								
	that is no longer true?								
2.	List th	List the three subatomic particles, their charge, symbol, and where they are located within an atom							
3.	Describe the two parts of an atom.								
	a.	a. What subatomic particle(s) make up the mass of the atom?							
	b.	b. What subatomic particle(s) make up the volume of an atom?							
4.	Define the difference between atomic mass and mass number.								
5.	For each of the following scientists, tell what they contributed to the model of the atom:								
	a.	Democritus	d.	Rutherford					
	b.	Dalton	e.	Bohr					
	c.	Thomson	f.	Schrodinger					
6.	What were the two main conclusions of Rutherford's experiment?								
7.									
8.	Using your periodic table determine the following information about the element Cadmium:								
	a.	atomic #	d.	# of electrons					
	b.	atomic mass	e.	mass number					
	C.	# of protons	f.	# of neutrons					
9.	Using your periodic table determine the following information about the element Plutonium (Pu):								
	a.	atomic #	d.	# of electrons					
	b.	atomic mass	e.	mass number					
	c.	# of protons	f.	# of neutrons					
10	Here a	are three isotopes of an element: 12C	¹³ C	¹⁴ C					
	a.	The element is:							
	b.	How many protons does this element have?							
	c.	The numbers 12, 13, and 14 refer to the							
	d.	How many neutrons are in the first isotope?	?						
	e. How many neutrons are in the second isotope?								
	f. How many neutrons are in the third isotope?								

Complete the following chart:

Isotope name	Average atomic #	mass #	# of protons	# of neutrons	# of electrons
Potassium-37	2a.	2b.	2c.	2d.	2e.
Oxygen-17	3a.	3b.	3c.	3d.	3e.
uranium-235	4a.	4b.	4c.	4d.	4e.
uranium-238	5a.	5b.	5c.	5d.	5e.
boron-10	6a.	6b.	6c.	6d.	6e.
boron-11	7a.	7b.	7c.	7d.	7e.

DIRECTIONS: For the following problems, show your work! Be thorough.

- 8. What is the atomic mass of hafnium if, out of every 100 atoms, 5 have a mass of 176, 19 have a mass of 177, 27 have a mass of 178, 14 have a mass of 179, and 35 have a mass of 180.0?
- 9. Boron exists in two isotopes, boron-10 and boron-11. Based on the atomic mass for Boron, which isotope should be more abundant?
- 10. Lithium-6 is 4.00% abundant and lithium-7 is 96.00% abundant. What is the average mass of lithium?
- 11. Iodine is 80.0% 127 I, 17.00% 126 I, and 3.0% 128 I. Calculate the average atomic mass of iodine.
- 12. Naturally occurring europium (Eu) consists of two isotopes was a mass of 151 and 153. Europium-151 has an abundance of 48.03% and Europium-153 has an abundance of 51.97%. What is the atomic mass of europium?
- 13. Strontium consists of four isotopes with masses of 84 (abundance 0.500%), 86 (abundance of 9.90%), 87 (abundance of 7.00%), and 88 (abundance of 82.6%). Calculate the atomic mass of strontium.
- 14. Gallium occurs in nature as a mixture of two isotopes. They are Ga-69 with an abundance of 60.108% and a mass of 68.926 amu and Ga-71 with a mass of 70.925 amu. Calculate the average atomic mass of Gallium.
- 15. Give the average atomic mass for nitrogen which has two isotopes: nitrogen 14 with a mass of 14.00 a.m.u. and a relative abundance of 99.63% and nitrogen 15 with a mass of 15.00 a.m.u.
- 16. HONORS ONLY: Give the relative abundance of the two isotopes of neon when neon 20 has a mass of 20.0 and neon 22 has a mass of 22.00 a.m.u.

- 17. HONORS ONLY: Find the relative percentages of chlorine, if it is made of Cl-35 and Cl-37.
- 18. HONORS ONLY: Antimony, Sb, has two stable isotopes: ¹²¹Sb, 120.904g, and ¹²³Sb, 122.904g. What are the relative abundances of these isotopes? From the periodic table the average atomic mass of antimony is 121.760g.
- 19. HONORS ONLY: Silver has two isotopes, ¹⁰⁷Ag and ¹⁰⁹Ag. Their isotopic masses are 106.9051g and 108.9047g, respectively. The average atomic mass of Ag, from the periodic table, is 107.868g. Calculate the abundances.