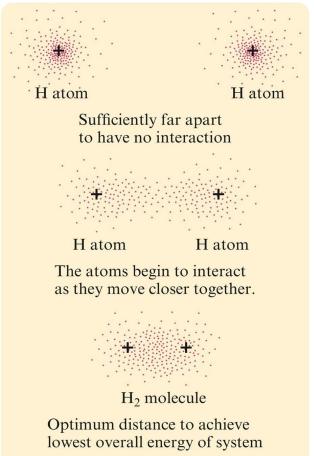


Chapter 8

Bonding: General Concepts

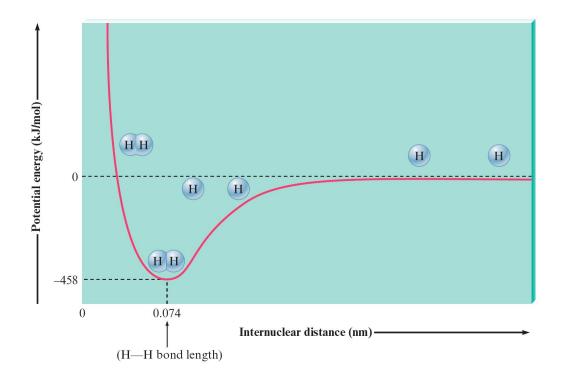
Coulomb's Law


$$E = (2.31 \times 10^{-19} \text{ J} \cdot \text{nm}) \left(\frac{Q_1 Q_2}{r} \right)$$

- E Units of joules
- r Distance between ion centers in nanometers
- Q_1 and Q_2 Numerical ion charges

Figure 8.1 (a) - The Interaction of Two Hydrogen Atoms

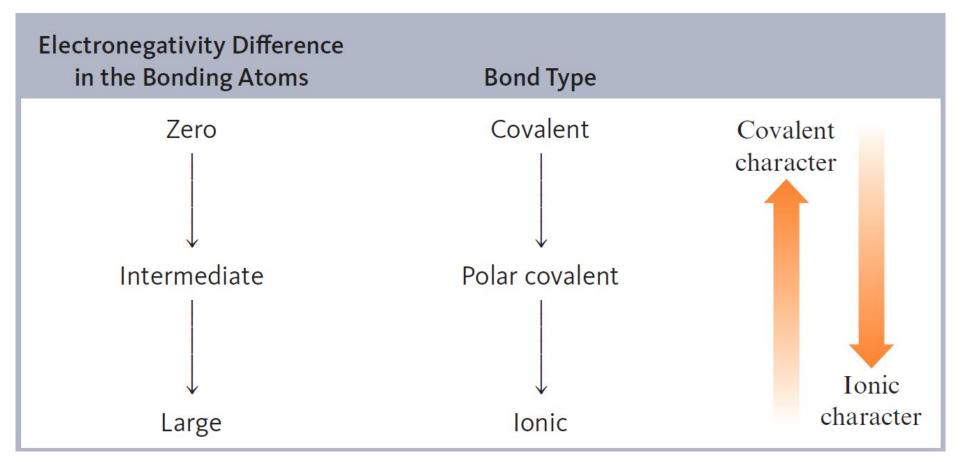
 Bonds will form if E is lower than atoms of that of



Bond Length

Distance between two atoms when potential

energy is minimal


Covalent Bonding

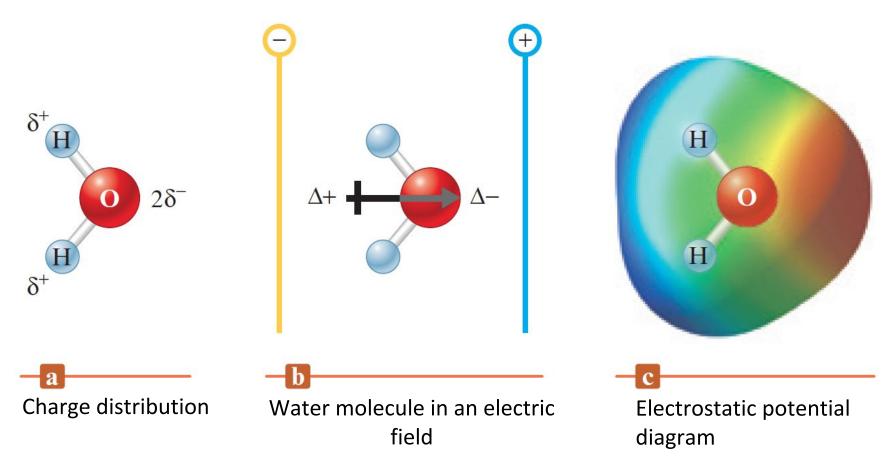
- Equal sharing of electrons between two identical atoms
 - Caused by the mutual attraction of nuclei for shared electrons
- Polar covalent bond: Bond in which the electrons are not shared equally because one atom attracts them more strongly than the other
 - Example Bonding in hydrogen fluoride

Section 8.2 *Electronegativity*

Table 8.1 - Relationship between Electronegativity and Bond Type

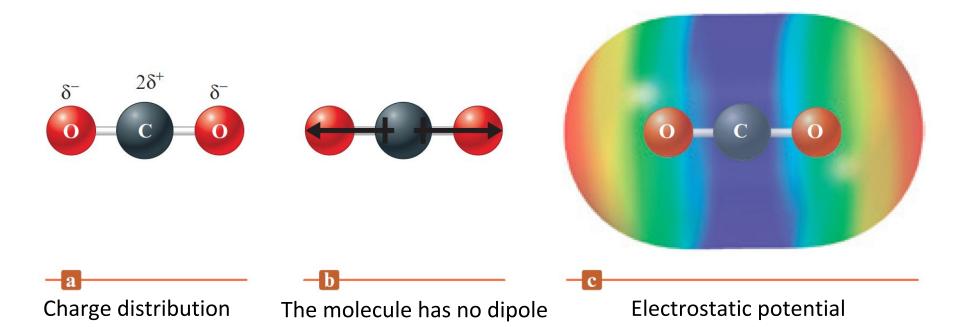
Copyright ©2017 Cengage Learning. All Rights Reserved.

Section 8.2 *Electronegativity*



Answer the following in your notes, compare with a partner

- Order the following bonds according to polarity:
 - H—H
 - O—H
 - Cl—H
 - S—H
 - F—H


Figure 8.5 - H₂O Molecule

Copyright ©2017 Cengage Learning. All Rights Reserved.

Figure 8.7 - CO₂ Molecule

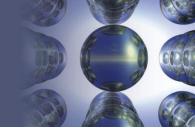
Copyright ©2017 Cengage Learning. All Rights Reserved.

moment as the opposed

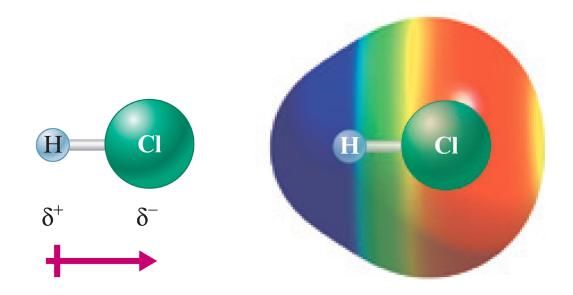
polarities cancel out

diagram

Photos: Ken O'Donoghue © Cengage Learning


Table 8.2 - Molecules with Polar Bonds but No Resulting Dipole Moment

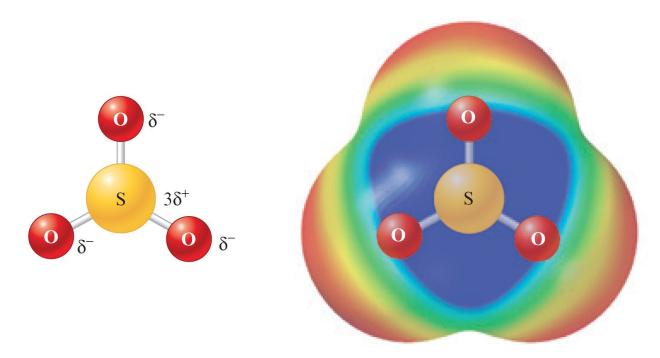
Туре	General Example	Cancellation of Polar Bonds	Specific Example	Ball-and-Stick Model
Linear molecules with two identical bonds	В—А—В	$\longleftrightarrow \longleftrightarrow$	CO ₂	9 9 9
Planar molecules with three identical bonds 120 degrees apart	B A A 120° B		SO ₃	0
Tetrahedral molecules with four identical bonds 109.5 degrees apart	B A B B		CCI ₄	


Answer the following in your notes, compare with a partner

- For each of the following molecules, show the direction of the bond polarities and indicate which ones have a dipole moment
 - HCl
 - Cl₂
 - SO₃

Example 8.2 - Solution (Continued 1)

The HCl molecule has a dipole moment


Example 8.2 - Solution (Continued 2)

- Cl₂ molecule
 - The two chlorine atoms share the electrons equally
 - No bond polarity occurs
 - The Cl₂ molecule has no dipole moment

Example 8.2 - Solution (Continued 4)

- The molecule has no dipole moment
 - Symmetrically arranged bonds cancel

Section 8.4 *Ions: Electron Configurations and Sizes*

Answer the following in your notes, compare with a partner

- Arrange the following ions in order of decreasing size
 - Se²⁻, Br⁻, Rb⁺, Sr²⁺

Section 8.5 *Energy Effects in Binary Ionic Compounds*

Lattice Energy Calculations

Represented by a modified form of Coulomb's law

Lattice energy =
$$k \left(\frac{Q_1 Q_2}{r} \right)$$

- k Proportionality constant
 - Depends on the structure of the solid and the electronic configurations of the ions
- Q_1 and Q_2 Charges on the ions
- r Shortest distance between the centers of the anions and the cations

Section 8.8 Covalent Bond Energies and Chemical Reactions

Bond Energy

- E added to the system to break bonds
 - Endothermic
- E released when bonds are formed
 - Exothermic

Covalent Bond Energies and Chemical Reactions

Answer in your notes, compare with a partner

• Use the bond energies listed in Table 8.4, and calculate ΔH for the reaction of methane with chlorine and fluorine to give Freon-12 (CF₂Cl₂)

$$CH_4(g) + 2Cl_2(g) + 2F_2(g) \longrightarrow CF_2Cl_2(g) + 2HF(g) + 2HCl(g)$$

Interactive Example 8.5 - Solution

- Combine energy changes to calculate ΔH
 - $\Delta H = E$ to break bonds E released when bonds form
 - The minus sign gives the correct sign to the energy terms for the exothermic processes

Section 8.8

Covalent Bond Energies and Chemical Reactions

Interactive Example 8.5 - Solution (Continued 1)

Reactant bonds broken

$$CH_4$$
: 4 mol C—H 4 mol × $\frac{413 \text{ kJ}}{\text{mol}}$ = 1652 kJ

$$2Cl_2$$
: 2 mol Cl—Cl 2 mol × $\frac{239 \text{ kJ}}{\text{mol}}$ = 478 kJ

$$2F_2$$
: 2 mol F—F 2 mol × $\frac{154 \text{ kJ}}{\text{mol}} = 308 \text{ kJ}$

Total energy requied = 2438 kJ

Section 8.8

Covalent Bond Energies and Chemical Reactions

Interactive Example 8.5 - Solution (Continued 2)

Product bonds formed

$$CF_2Cl_2$$
: 2 mol C—F 2 mol × $\frac{485 \text{ kJ}}{\text{mol}}$ = 970 kJ and

$$2 \mod C - C1 \quad 2 \mod \times \frac{339 \text{ kJ}}{\mod} = 678 \text{ kJ}$$

2HF: 2 mol H—F 2 mol
$$\times \frac{565 \text{ kJ}}{\text{mol}} = 1130 \text{ kJ}$$

2HCl: 2 mol H—Cl 2 mol
$$\times \frac{427 \text{ kJ}}{\text{mol}} = 854 \text{ kJ}$$

Total energy released = 3632 kJ

Copyright ©2017 Cengage Learning. All Rights Reserved.

Section 8.8 Covalent Bond Energies and Chemical Reactions

Interactive Example 8.5 - Solution (Continued 3)

■ Calculating ΔH

 ΔH = energy required to break bonds – energy released when bonds form

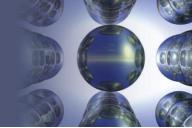
= 2438 kJ - 3632 kJ

=-1194 kJ

Problem Solving Strategy - Steps for Writing Lewis Structures

- 1. Sum the valence e- from all atoms
- 2. Use a pair of e- to form a bond between each pair of atoms
- Arrange the remaining e- to satisfy the duet rule for hydrogen and the octet rule for other elements

Drawing the Lewis Structure of Water


- Sum the valence e- for H₂O
 - -1 + 1 + 6 = 8 valence e-

$$\begin{array}{cccc}
\uparrow & \uparrow & \uparrow \\
H & H & O
\end{array}$$

Draw the O—H single bonds

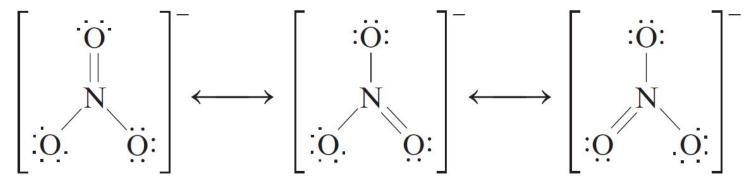
$$H-O-H$$

A line is used to indicate each pair of bonding e-

Drawing the Lewis Structure of Water (Continued)

- Distribute the remaining e- to achieve a noble gas configuration for each atom
 - Dots represent lone e- pairs

Copyright ©2017 Cengage Learning. All Rights Reserved.


Answer in your notes, compare with a partner

- Give the Lewis structure for each of the following
 - HF
 - N₂
 - NH₃
 - NO⁺

Resonance

- Example Nitrate ion
 - Has three valid Lewis structures

 The most accurate structure is obtained when the three structures are superimposed

Answer in your notes, compare with a partner

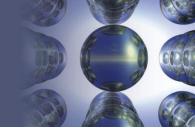
 Describe the electron arrangement in the nitrite anion (NO₂⁻) using the localized electron model

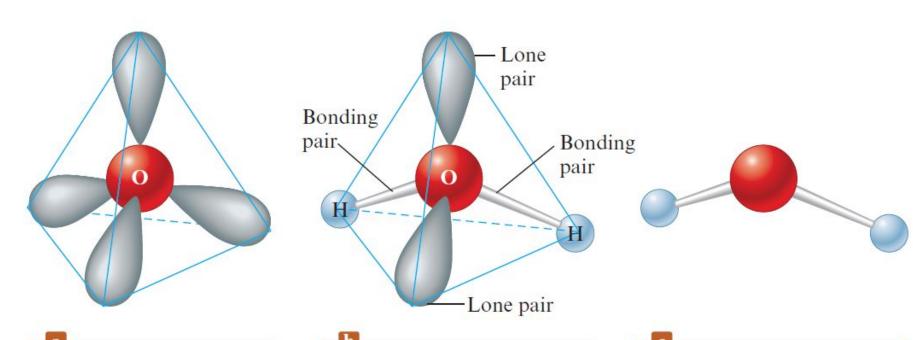
Example 8.9 - Solution

- NO₂ possesses 18 valence electrons
 - -5 + 2(6) + 1 = 18
- Indicating the single bonds gives the structure
 O—N—O
- The remaining 14 electrons (18 4) can be used to produce these structures

Copyright ©2017 Cengage Learning. All Rights Reserved.

Rules Governing Formal Charge


- To calculate the formal charge on an atom:
 - Take the sum of the lone pair e- and one-half the shared e-
 - Subtract the number of assigned e-from the number of valence e- on the free, neutral atom to obtain the formal charge


Answer in your notes, compare with a partner

 Describe the molecular structure of the water molecule

$$H-\ddot{O}-H$$

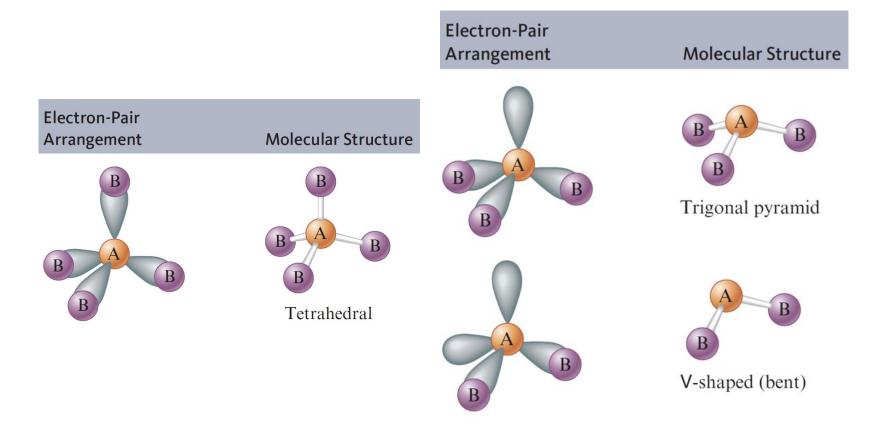
Example 8.11 - Solution (Continued)

The tetrahedral arrangement of the electron pairs around oxygen in the water molecule

Two of the electron pairs are shared between oxygen and the hydrogen atoms and two are lone pairs

The V-shaped molecular structure of the water molecule

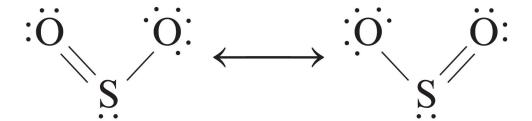
Table 8.6 - Arrangements of Electron Pairs around an Atom Yielding Minimum Repulsion


Number of Electron Pairs	Arrangem	ent of Electron Pairs	Example
2	Linear	A	9 9 9
3	Trigonal planar	A	gage Learning
4	Tetrahedral	A	Photos: Ken O'Donoghue © Cengage Learning

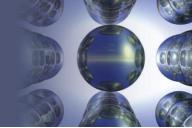
Discuss with partner, find another group and decide on an answer

- You and a friend are studying for a chemistry exam
 - What if your friend tells you that all molecules with polar bonds are polar molecules?
 - How would you explain to your friend that this is not correct?
 - Provide two examples to support your answer

Table 8.7 - Structures of Molecules with Four Electron Pairs around the Central Atom


Interactive Example 8.14 - Structures of Molecules with Multiple Bonds

- Predict the molecular structure of the sulfur dioxide molecule
 - Is this molecule expected to have a dipole moment?

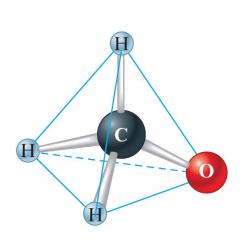


Interactive Example 8.14 - Solution

- First, we must determine the Lewis structure for the SO₂ molecule, which has 18 valence electrons
 - Expected resonance structures

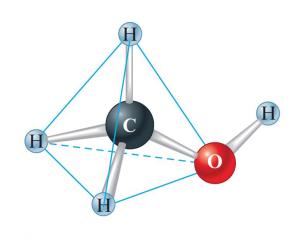
 To determine the molecular structure, we must count the electron pairs around the sulfur atom

Molecules Containing No Single Atom


Consider a methanol (CH₃OH) molecule

$$H-C-\ddot{O}-H$$

 The molecular structure can be predicted from the arrangement of pairs around the carbon and oxygen atoms


Figure 8.22 - The Molecular Structure of Methanol

The arrangement of electron pairs and atoms around the carbon atom

The arrangement of bonding and lone pairs around the oxygen atom

The molecular structure