

Hybridization and the Localized Electron Model

Section 9.1

Figure 9.3 - *sp*³ Hybridization of a Carbon Atom

Orbital Energy-Level Diagram

 Example - Hybridization of the carbon 2s and 2p orbitals in methane

Figure 9.6 - Tetrahedral Set of Four *sp*³ Orbitals

Answer in your notes, compare with a partner

 Describe the bonding in the ammonia molecule using the localized electron model Example 9.1 - Solution

- Write the Lewis structure
- Determine arrangement of e- pairs using VSEPR
- Determine the hybrid orbitals needed

Example 9.1 - Solution (Continued 2)

In the NH₃ molecule, three sp³ orbitals are used to form bonds to three hydrogen atoms, and the fourth sp³ orbital holds the lone

Hybridization and the Localized Electron Model

Figure 9.8 - Formation of *sp*² Orbitals

Section 9.1

Hybridization and the Localized Electron Model

Section 9.1

Figure 9.9 - Orbital Energy-Level Diagram for the Formation of *sp*² Orbitals in Ethylene

Figure 9.10 - *sp*² Hybridization

Key Principle in *sp*² Hybridization

 If an atom is surrounded by three effective pairs, a set of sp² hybrid orbitals is required

Copyright ©2017 Cengage Learning. All Rights Reserved.

Hybridization and the Localized Electron Model

Figure 9.14 - Formation of *sp* Orbitals

Section 9.1

Figure 9.15 - Hybrid Orbitals in the CO₂ Molecule

Figure 9.16 - Orbital Energy-Level Diagram for the Formation of *sp* Hybrid Orbitals on Carbon

Figure 9.17 - An sp Hybridized Carbon Atom

Figure 9.19 (a) - Orbitals Forming Bonds in Carbon Dioxide

Answer in your notes, compare with a partner

Describe the bonding in the N₂ molecule

Copyright ©2017 Cengage Learning. All Rights Reserved.

Answer in your notes, compare with a partner

- For each of the following molecules or ions, predict the hybridization of each atom, and describe the molecular structure
 - a. co
 - b. BF₄⁻
 - c. XeF₂

Figure 9.25 - Formation of Molecular Orbitals

 $1s_{A} - 1s_{B}$ antibonding (MO₂)

Copyright ©2017 Cengage Learning. All Rights Reserved.

Figure 9.28 - Molecular Energy-Level Diagram for the H₂ Molecule

Bond Order

Used to indicate bond strength

Bond order = $\frac{\text{number of bonding electrons} - \text{number of antibonding electrons}}{2}$

- Bonds are perceived in terms of pairs of electrons
- Larger the bond, greater the bond strength

Bond Order (Continued)

- Consider the H_2^- ion
 - Contains two bonding electrons and one antibonding electron

Types of Magnetism in the Presence of a Magnetic Field

- Paramagnetism: attracted into inducing magnetic field
 - Associated with unpaired electrons
 - Substance that has both paired and unpaired e-
- Diamagnetism: repelled from inducing magnetic field
 - Associated with paired electrons

Heteronuclear Diatomic Molecules

- Heteronuclear: Different atoms
- A special case involves molecules containing atoms adjacent to each other in the periodic table
 - MO diagram can be used for homonuclear molecules as atoms involved in such molecules are similar

Answer in your notes, compare with a partner

 Use the molecular orbital model to predict the magnetism and bond order of the NO⁺ and CN⁻ ions Section 9.4 Bonding in Heteronuclear Diatomic Molecules

Interactive Example 9.8 - Solution

- The NO⁺ ion has 10 valance electrons (5 + 6 1)
- The CN⁻ ion also has 10 valance electrons (4 + 5 +
 1) σ_{2p}* _____
- Both ions are diamagnetic

Bond order =
$$\frac{8-2}{2} = 3$$

