Chemistry

Chapter 11

Properties of Solutions

Section 11.1

Solution Composition

Do in your notes, compare with partner

- A solution is prepared by mixing 1.00 g ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ with 100.0 g water to give a final volume of 101 mL
- Calculate the molarity, and mole fraction of ethanol in this solution

Section 11.1

Solution Composition

Interactive Example 11.1 - Solution

- Molarity
- The moles of ethanol can be obtained from its molar mass ($46.07 \mathrm{~g} / \mathrm{mol}$):
$1.00 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{46.07 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=2.17 \times 10^{-2} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

$$
\text { Volume }=101 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=0.101 \mathrm{~L}
$$

Section 11.1
 Solution Composition

Interactive Example 11.1 - Solution (Continued 1)

$$
\begin{gathered}
\text { Molarity of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\frac{\text { moles of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}{\text { liters of solution }}=\frac{2.17 \times 10^{-2} \mathrm{~mol}}{0.101 \mathrm{~L}} \\
\text { Molarity of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=0.215 \mathrm{M}
\end{gathered}
$$

Section 11.1

Solution Composition

Interactive Example 11.1 - Solution (Continued 2)

- Mole fraction

$$
\begin{gathered}
\text { Mole fraction of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\frac{n_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}}{n_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HH}}+n_{\mathrm{H}_{2} \mathrm{O}}} \\
n_{\mathrm{H}_{2} \mathrm{O}}=100.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=5.56 \mathrm{~mol} \\
\chi_{\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}}=\frac{2.17 \times 10^{-2} \mathrm{~mol}}{2.17 \times 10^{-2} \mathrm{~mol}+5.56 \mathrm{~mol}}=\frac{2.17 \times 10^{-2}}{5.58}=0.00389
\end{gathered}
$$

Section 11.1

Solution Composition

Answer with partner, compare with another group

- You are given two aqueous solutions with different ionic solutes (Solution A and Solution B)
- Solution A has a greater concentration than Solution B by mass percent, but Solution B has a greater concentration than Solution A in terms of molality.
- Is this possible?
- If not, explain why not
- If it is possible, provide example solutes for A and B and justify your answer with calculations

Section 11.1

Solution Composition

Normality (N)

- Measure of concentration
- Number of equivalents per liter of solution
- Definition of an equivalent depends on the reaction that takes place in a solution

Section 11.1

Solution Composition

Do in your notes, compare with partner

- The electrolyte in automobile lead storage batteries is a 3.75 M sulfuric acid solution that has a density of $1.230 \mathrm{~g} / \mathrm{mL}$
- Calculate the mass percent and normality of the sulfuric acid

Section 11.1

Solution Composition

Interactive Example 11.2 - Solution

- What is the density of the solution in grams per liter?

$$
1.230 \frac{\mathrm{~g}}{\mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=1.230 \times 10^{3} \mathrm{~g} / \mathrm{L}
$$

- What mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is present in 1.00 L of solution?
- We know 1 liter of this solution contains 1230 g of the mixture of sulfuric acid and water

Section 11.1

Solution Composition

Interactive Example 11.2 - Solution (Continued 1)

- Since the solution is 3.75 M , we know that 3.75 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is present per liter of solution
- The number of grams of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present is

$$
3.75 \mathrm{~mol} \times \frac{98.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol}}=368 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Section 11.1

Solution Composition

Interactive Example 11.2 - Solution (Continued 2)

- How much water is present in 1.00 L of solution?
- The amount of water present in 1 liter of solution is obtained from the difference

$$
1230 \mathrm{~g} \text { solution }-368 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}=862 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

Section 11.1

Solution Composition

Interactive Example 11.2 - Solution (Continued 5)

- What is the normality?
- Since each sulfuric acid molecule can furnish two protons, 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ represents 2 equivalents
- Thus, a solution with 3.75 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ per liter contains $2 \times 3.75=7.50$ equivalents per liter
- The normality is 7.50 N

Section 11.2

The Energies of Solution Formation

Steps Involved in the Formation of a Liquid Solution

1. Expand the solute (endothermic)

- Separate the solute into its individual components

2. Expand the solvent (endothermic)

- Overcome intermolecular forces in the solvent

3. Allow the solute and solvent to interact (exothermic)

Section 11.2

The Energies of Solution Formation

Enthalpy (Heat) of Solution $\left(\Delta H_{\text {soln }}\right)$

- Enthalpy change associated with the formation of the solution is the sum of the ΔH values for the steps:

$$
\Delta H_{\text {soln }}=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}
$$

- $\Delta H_{\text {soln }}$ can have a positive sign when energy is absorbed or a negative sign when energy is released

Section 11.2

The Energies of Solution Formation

Factors That Favor a Process

- Increase in probability of the mixed state when the solute and solvent are placed together
- Processes that require large amounts of energy tend not to occur
- Like dissolves like

Section 11.2

The Energies of Solution Formation

Answer in your notes, compare with partner

- Decide whether liquid hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ or liquid methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is the more appropriate solvent for the substances grease $\left(\mathrm{C}_{20} \mathrm{H}_{42}\right)$ and potassium iodide (KI)

Section 11.2

The Energies of Solution Formation
Interactive Example 11.3 - Solution

- Hexane is a nonpolar solvent because it contains C - H bonds
- Hexane will work best for the nonpolar solute grease
- Methanol has an O—H group that makes it significantly polar
- Will serve as the better solvent for the ionic solid KI

Section 11.4

The Vapor Pressures of Solutions

Vapor Pressures of Solutions

- Presence of a nonvolatile solute lowers the vapor pressure of a solvent
- Inhibits the escape of solvent molecules

Pure solvent

Solution with a nonvolatile solute

Section 11.8

Colloids

The Tyndall Effect

- Scattering of light by particles
- Used to distinguish between a suspension and a true solution
- When a beam of intense light is projected:
- The beam is visible from the side in a suspension
- The light beam is invisible is in a true solution

Section 11.8

Colloids

Figure 11.23 - The Tyndall Effect

Photo © Cengage Learning. All rights reserved

Copyright ©2017 Cengage Learning. All Rights Reserved.

