

Rate Law

- Chemical reactions are reversible
 - As NO and O₂ accumulate, they can react to re-form NO₂ $O_2(g) + 2NO(g) \longrightarrow 2NO_2(g)$
- When gaseous NO₂ is placed in an otherwise empty container, initially the dominant reaction is $2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$

Rate Law (Continued)

- Change in the concentration of NO₂ depends only on the forward reaction
- Expression to be used if the reverse reaction is to be neglected

Rate = $k [NO_2]^n$ (12.1)

- # k = rate constant
- n = order of the reactant

Rate Law - Key Points

- The concentrations of the products do not appear in the rate law
- The value of the exponent n must be determined by experiment
 - Cannot be written from the balanced equation

Rate Constant

Definition of reaction rate in terms of the consumption of NO₂

Rate =
$$-\frac{\Delta [NO_2]}{\Delta t} = k [NO_2]^n$$

Types of Rate Laws

Differential rate law (rate law)

- Expresses how the rate depends on the concentration of the reactant
- Integrated rate law: Expresses how the concentration depends on time

Do in your notes, compare with partner

 Using the following information, find the reaction order with respect to each reactant.

$\operatorname{BrO}_{3}^{-}$ ((aq) +	$-5Br^{-}$	(aq) +	$-6H^+$ ((aq)	$\rightarrow 3Br_2$	(l) +	$3H_2O$	P(l)

Experiment	Initial Concentration of BrO ₃ [–] (mol/L)	Initial Concentration of Br [–] (mol/L)	Initial Concentration of H ⁺ (mol/L)	Measured Initial Rate (mol/L · s)
1	0.10	0.10	0.10	$8.0 imes10^{-4}\ 1.6 imes10^{-3}\ 3.2 imes10^{-3}\ 3.2 imes10^{-3}$
2	0.20	0.10	0.10	
3	0.20	0.20	0.10	
4	0.10	0.10	0.20	

First-Order Rate Laws

 Rate law for the decomposition of dinitrogen pentoxide

Rate =
$$-\frac{\Delta[N_2O_5]}{\Delta t} = k[N_2O_5]$$

- This is a first-order reaction
 - Rate of formation of products increases with the increase in the concentration of the reactant

Integrated First-Order Rate Law

Consider a reaction with the following rate law

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]$$

The integrated first-order rate law is

$$\ln [A] = -kt + \ln [A]_0 \qquad (12.2)$$

Integrated First-Order Rate Law - Key Points (Continued)

 The equation can be expressed in terms of a ratio of [A] and [A]₀

$$\ln\left(\frac{[A]_0}{[A]}\right) = kt$$

Do in notes, compare with partner

Calculate [N₂O₅] at 150 s after the start of the following reaction:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

• Use the following information:

$[N_2O_5]$ (mol/L)	Time (s)
0.1000	0
0.0707	50
0.0500	100
0.0250	200
0.0125	300
0.00625	400

Half-Life of a First-Order Reaction

- Half-life of a reactant (t_{1/2}): Time required for a reactant to reach half its original concentration
- Consider the general reaction $aA \rightarrow products$
 - If the reaction is first order in [A], then

$$\ln\left(\frac{[A]_0}{[A]}\right) = kt$$

• When $t = t_{1/2}$,

$$[\mathbf{A}] = \frac{[\mathbf{A}]_0}{2}$$

Half-Life of a First-Order Reaction (Continued 1)

• For $t = t_{1/2}$, the integrated rate law becomes

$$\ln\left(\frac{[A]_0}{[A]_0 / 2}\right) = kt_{1/2}$$
 or $\ln(2) = kt_{1/2}$

Substituting the value for ln(2) and solving for t_{1/2}

$$t_{1/2} = \frac{0.693}{k} \tag{12.3}$$

Do in notes, compare with partner

- A certain first-order reaction has a half-life of 20.0 minutes
 - a. Calculate the rate constant for this reaction
 - b. How much time is required for this reaction to be 75% complete?

Interactive Example 12.4 - Solution (a)

Solving equation (12.3) for k gives

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{20.0 \text{ min}} = 3.47 \times 10^{-2} \text{ min}^{-1}$$

Interactive Example 12.4 - Solution (b)

We use the integrated rate law in the form

$$\ln\left(\frac{[A]_0}{[A]}\right) = kt$$

 If the reaction is 75% complete, 75% of the reactant has been consumed, leaving 25% in the original form

$$\frac{[A]}{[A]_0} \times 100\% = 25\%$$

Interactive Example 12.4 - Solution (b) (Continued 1)

$$\frac{[A]}{[A]_0} = 0.25 \text{ or } \frac{[A]_0}{[A]} = \frac{1}{0.25} = 4.0$$
$$\ln\left(\frac{[A]_0}{[A]}\right) = \ln(4.0) = kt = \left(\frac{3.47 \times 10^{-2}}{\min}\right)t$$
$$t = \frac{\ln(4.0)}{3.47 \times 10^{-2}} = 40 \min$$

 It takes 40 minutes for this particular reaction to reach 75% completion

Interactive Example 12.4 - Solution (b) (Continued 2)

- Alternate way of solving the problem using the definition of half-life
 - After one half-life the reaction has gone 50% to completion
 - If the initial concentration were 1.0 mol/L, after one half-life the concentration would be 0.50 mol/L
 - One more half-life would produce a concentration of 0.25 mol/L

Interactive Example 12.4 - Solution (b) (Continued 3)

- Comparing 0.25 mol/L with the original 1.0 mol/L shows that 25% of the reactant is left after two half-lives
- What percentage of reactant remains after three half-lives?
 - Two half-lives for this reaction is 2(20.0 min), or 40.0 min, which agrees with the preceding answer

Second-Order Rate Laws

Consider a general reaction

 aA → products
 Rate law for a second-order reaction

Rate =
$$-\frac{\Delta[A]}{\Delta t} = k[A]^2$$
 (12.4)

The integrated second-order rate law has the form

$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$
(12.5)

Copyright ©2017 Cengage Learning. All Rights Reserved.

Half-Life for a Second-Order Reaction

• When one half-life of the second-order reaction has elapsed ($t = t_{1/2}$), by definition,

$$[A] = \frac{[A]_0}{2}$$

Equation (12.5) becomes

$$\frac{1}{\frac{[A]_0}{2}} = kt_{1/2} + \frac{1}{[A]_0}$$

Zero-Order Rate Laws

Rate law for a zero-order reaction

Rate =
$$k[A]^0 = k(1) = k$$

- The rate is constant
- Integrated rate law for a zero-order reaction

$$[A] = -kt + [A]_0 \qquad (12.7)$$

 $\Delta[A]$

[A]

 $[A]_0$

Slope = $\frac{\Delta[A]}{\Delta t}$

Answer with partner, compare with another group

- Consider the simple reaction $aA \rightarrow products$
 - You run this reaction and wish to determine its order
 - What if you made a graph of reaction rate versus time?
 - Could you use this to determine the order?
 - Sketch the three plots of rate versus time for the reaction if it is zero, first, or second order
 - Sketch these plots on the same graph, compare them, and defend your answer

Section 12.5 *Reaction Mechanisms*

Reaction Mechanism

- Most chemical reactions occur by a series of steps
- Example The reaction between nitrogen dioxide and carbon monoxide involves the following steps:

$$NO_{2}(g) + NO_{2}(g) \xrightarrow{k_{1}} NO_{3}(g) + NO(g)$$
$$NO_{3}(g) + CO(g) \xrightarrow{k_{2}} NO_{2}(g) + CO_{2}(g)$$

Where k₁ and k₂ are the rate constants of the individual reactions

Section 12.5 *Reaction Mechanisms*

Molecularity

- Number of species that must collide to produce the reaction represented by an elementary step
 - Unimolecular: Reaction that involves one molecule
 - Bimolecular: Reaction that involves the collision of two species
 - Termolecular: Reaction that involves the collision of three species

Requirements of a Reaction Mechanism

- The sum of the elementary steps must give the overall balanced equation for the reaction
- The mechanism must agree with the experimentally determined rate law

Section 12.5 *Reaction Mechanisms*

Do in your notes, compare with partner

 $2NO_{2}(g) + F_{2}(g) \rightarrow 2NO_{2}F(g)$ ■ Experimentally determined rate law is Rate = k[NO_{2}][F_{2}] $NO_{2} + F_{2} \xrightarrow{k_{1}} NO_{2}F + F \quad (slow)$ $F + NO_{2} \xrightarrow{k_{2}} NO_{2}F \qquad (fast)$

Is this an acceptable mechanism?

Figure 12.10 - Activated Complex/Transition State

Relation between Effective Collisions and Temperature

 The fraction of effective collisions increases exponentially with temperature

Copyright ©2017 Cengage Learning. All Rights Reserved.

Figure 12.12 - Molecular Orientations

Requirements to be Satisfied for Reactants to Collide Successfully

- The collision energy must equal or exceed the activation energy
- The relative orientation of the reactants must allow the formation of any new bonds necessary to produce products

Discuss with partner, compare with another group

- There are many conditions that need to be met to result in a chemical reaction between molecules
 - What if all collisions between molecules resulted in a chemical reaction?
 - How would life be different?

Section 12.7 *Catalysis*

Figure 12.14 - Effect of a Catalyst on the Number of Reaction-Producing Collisions

