Electron
Configuration

Electron Structure

- In a neutral atom, electrons = atomic number.
- Electrons are arranged into energy levels.
- Energy Level (shell) defines how far the electron is away from the nucleus.

Electron Arrangement

Aufbau Rule: electrons fill into the lower energy orbitals before moving to higher energy orbitals

Hund's Rule: one electron must be in each position of an orbital before they are paired

Pauli exclusion principle: no two electrons can have the same set of quantum numbers (define properties of e^{-})

- Principle Quantum number: Energy Level (shell) defines how far the electron is away from the nucleus.

Bohr Model rings

Orbitals

- Orbital quantum number: defines the shape of orbital
-Four types:
-S
-p
-d
-f

Magnetic quantum number: defines the

orientation in space of the orbital (number of available spaces (positions) for electrons to fill

- Two electrons can fill each position
- How many electrons can each orbital
 hold?

Electron Spin

Spin Quantum number: designates direction of electron spin (must be spinning in opposite directions).

- Each orbital can hold up to 2 electrons.
-Why only 2 in each orbital?
- Spin up
- Spin down

Electron Structure

- Orbitals
-s / 1 position / 2 e
-p / 3 positions / 6 e
-d / 5 positions / $10 e^{-}$
-f / 7 positions / $14 e^{-}$

Electron Configurations

Orbital Notations

- Combines electron configuration with the spin quantum number.
- Use the configurations to help you write the correct orbital notation.
- Don't forget the rules:
- Aufbau
- Hund
- Pauli exclusion

Noble Gas Configuration

-Find your element.
-Find the noble gas (Group 8A) before your element.
-Write the noble gas in brackets.
-Add electrons to the noble gas until you reach your element.

