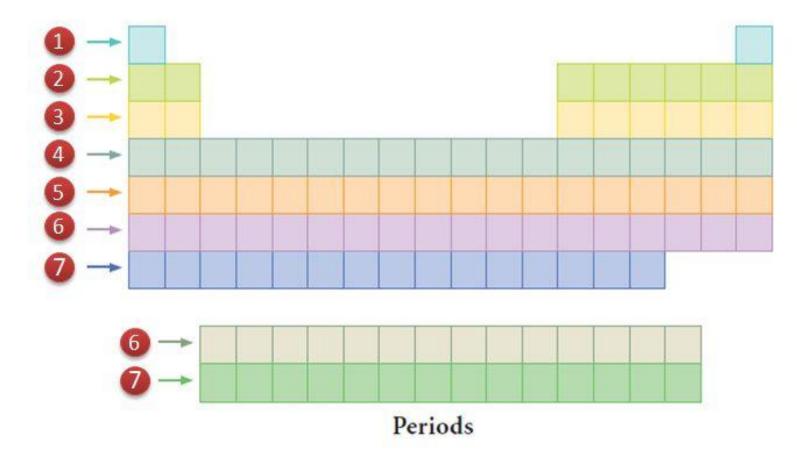
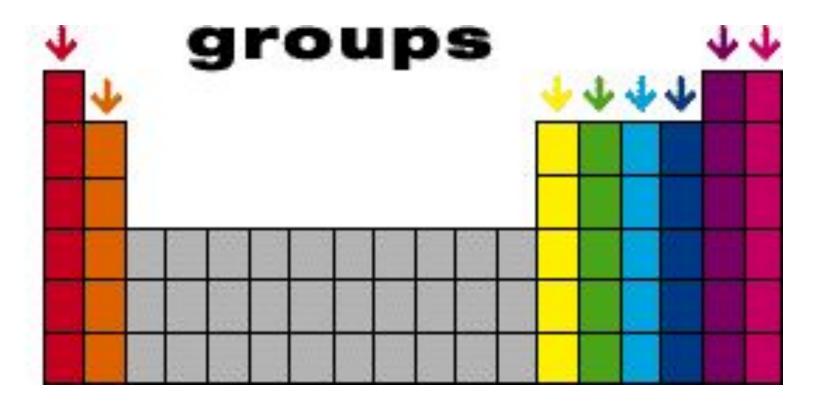
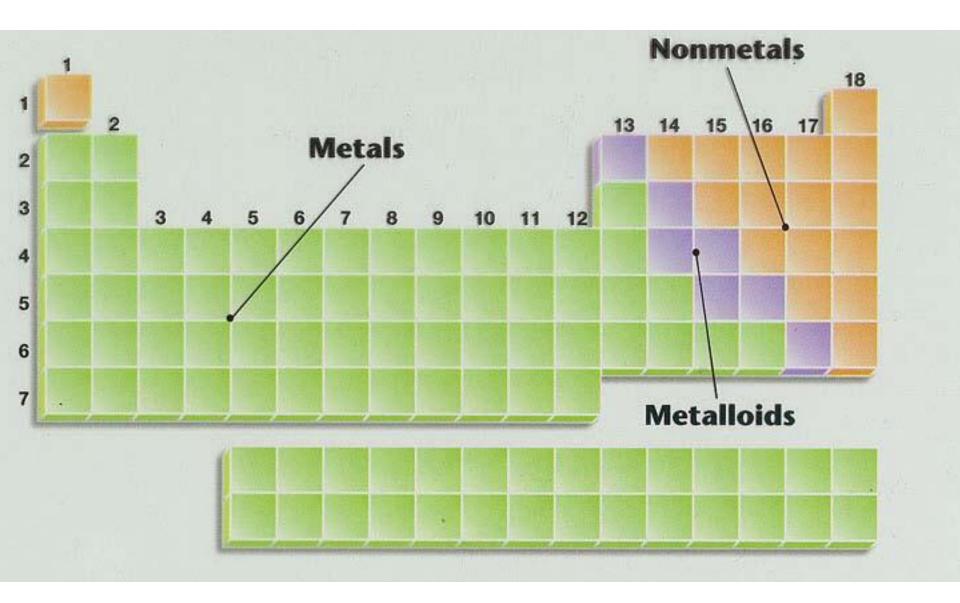
PERIODIC TABLE


1 2 1 Atomic #	3 4	5	6	7 8	9	10	11	12	13	14	15	16	17	18
1 H Symbol Hydrogen Name Weight	C Solid		M	/letalloids	Other	Nonme	tals Noble o	20200				_	273	Helium 4.002602
3 4 2 Li Lithium 6.94 9.012182	Hg Liquid H Gas	ł			nonmetals Metals			Jases	5 3 B Boron 10.81	6 1 C Carbon 12.011	7 E N Nitrogen 14.007	8 ê O Oxygen 15,999	9 7 F Fluorine 18.998	10 1 1 Ne Neon 20,1797
11 12 12 3 Na Mg	Rf Unkn	own			Lanthanoids Actinoids	Transition metals	n Post- transition metals	n	13 Al	14 i Si	15 P Phosphores	16 S Sulfur	17 Cl Chlorine	18 Ar
Sodium 22.989. Alagnesiun 24.305 19 4 K Potessium Calcium	21 22 Sc Ti Scandium Titanium		24 3 25 Cr ¹³ Mi	n ¹² Fe	Cobalt	28 Ni Nickel	29 Cu	30 15 Zn 15	Aluminium 26 981 31 Galis Gallium	Silicon 28.085 32 Gemanico	30 973 33 15 As 5	32.08 34 Se Selenium	35.45 35 1 Br 1 Bromine	Argon 39 948 36 5 Kr ¹³ X
39.0983 40.078 37 38 5 Rb Sr	44.955 47.867 39 6 40 Y 9 Zr	50.9415 5 41 6 4 10 Nb 19 1	42 43 Mo 1 To	c 🕴 Ru	Cobalt 58.933 45 Rh	46 1 Pd 1	Copper 63.546 47 Ag	Zinc 65.38 48 Cd	69.723 49 In	Gemaniun 72.63 50 \$ Sn \$	Arsenic 74.92160 51 52 51	78.96 52 Te	79.904 53	Krypton 83.798 54 5 Xe 18 50
Rubidium 85.4678 Strontium 87.62 55 56 6 18 8 18	Yttrium Zirconiu 88.90585 91.224 72 57-71 Hf	1 73 1 7	74 (98 74 75 W 11 Re	e 76 Os	1 77 1 1 Ir	Palladiun 106.42 78 Pt 35 Platinum 1	Silver 107.8682 79 6 Au 10 Gold 1	Cadmium 112.411 80 5 Hg 35	Indium 114.818 81 1 15 15 15 15 15 15 15 15	Tin 118.710 82 Pb	Antimony 121.760 83 Bi	Tellurium 127.60 84 6 Po 15	126.90 85 5 At 35 Astatine	Xenon 131.293 86 # K Rn #
Caesium Barium Parium	Hatnium 178.49 104 89–103 Rf Rutherton	180.94 1	106 § 10 Sg 1 Bl	enium ² Osmiun 6.207 190.23 17 108 h 10 h 108 Hs Hessiun	109 fr Mt 109	195.084 110 5 Ds 15	196.96 111 B	Mercury 200.59 112 6 Cn 32 Copercidur19	113 1 Uut 1 Ununtium 1	Lead 4 207.2 114 1 Fl 30 Flerovium ¹	Bismuth 5 208.98 115 Uup 35 Uhunpenti, 15	Polonium 6 (209) 116 1 LV 3 2 Uvemotur ¹⁹	(210) 117 1 Uus 1 Uhunseptu 1	Radon (222) 118 (100 100 100 100 100 100 100 100 100 10
(223) Radium (226)	(267)	elements wit			(2/0)	(281)	Roentgeni.18 (280)	(285) *	(284) 3	(289) *	(288) *	(293) *	(294)	(294)
		ł	Periodic Tat	ble Design &	Interface Cop	oyright © 1	997 Micha	ael Dayah	Ptable.co	om Last up	odated Jul	31, 2013		
	57 La Lanthanu 138.90	Cerium 140.116	140.90 144	d ¹³ odymiur ² 4.242 Promethi (145)	62 58m 150.36	63 5 Eu 55 Europium 151.964	64 5 Gd 55 Gadoliniun 7 157.25	65 Tb Terbium 158.92	66 15 Dy 162.500	67 19 Ho 19 Holmium 164.93	68 50 Er 50 Erbium 167.259	69 18 Tm 18 Thulium 168.93	70 5 Yb 15 Ytterbium 173.054	71 10 10 10 10 10 10 10 10 10 10 10 10 10
	89 Ac Actiniun (227)	# Th # F	91 92 Pa 10 Protactiniur 2 231.03 238	93 15 16 17 18 19 19 19 19 19 19 19 19 19 19	94 Plutoniun (244)	95 Am 12 Americium 12 (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf 25 (251)	99 10 10 10 10 10 10 10 10 10 10 10 10 10	100 500 500 500 500 500 500 500 500 500	101 101 100 100 100 100 100 100 100 100	102 10 Nobelium 1 (259)	103 Lr 32 Lawrendun 3 (262)

Arrangement

- •Mendeleev arranged the first periodic table.
 - Arranged by increasing atomic mass
 - •Why is this not useful now? Think about isotopes.
- •Periodic Law: arranged in order of increasing atomic number.
 - •Repetition of properties in each group
 - "Periodically" repeats with each new period

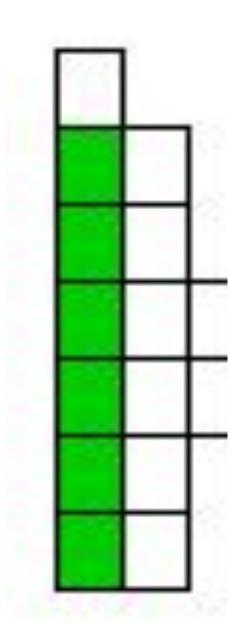

Arrangement


Periods/Series: horizontal rows

Arrangement

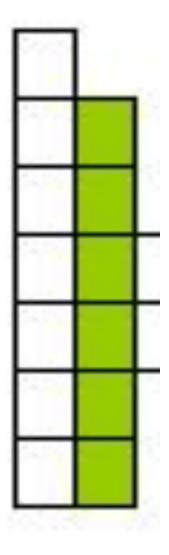
Groups/Families: vertical columns

Metals Physical Properties •Good electrical conductors

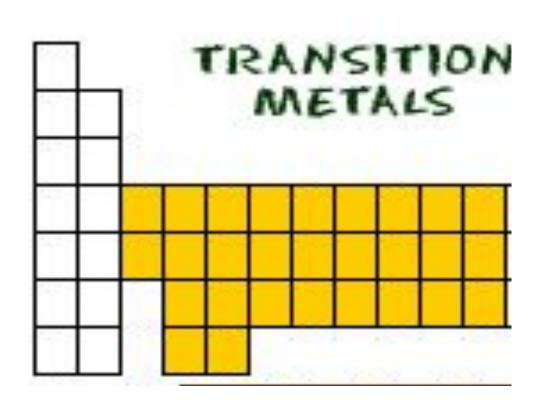

- Good heat conductors
- Lustrous
- Ductile and malleable
- Solids at room temperature
- •High melting point and boiling point
- •High density

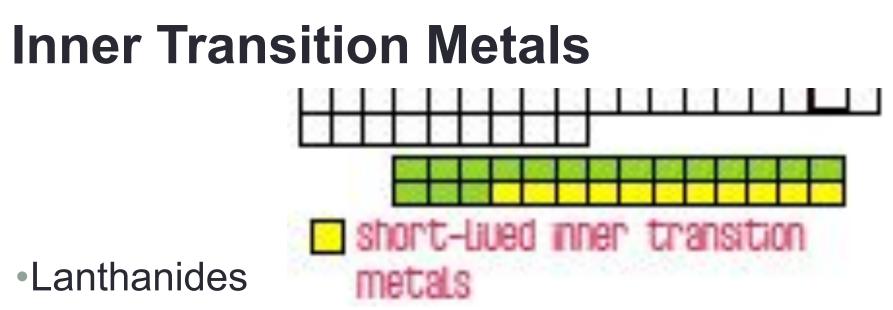
Metals Chemical Properties

- •Lose valence e⁻ easily (have less than 4 ve⁻)
- Low Electronegativity (trend)
- Corrode easily (react with water, acids)
- Ionic bonding
- Metallic bonding (alloys)


Alkali Metals

- React with water VIOLENTLY
- Not found in nature (elemental form)
- Soft
- •1 valence e⁻ (+1)
- Loses 1 e⁻ to form bonds


Alkaline Earth Metals


- React with Halogens to form salts
- •Not found in nature (elemental form)
- Found in molecules within earth's crust
- •2 valence electrons (+2)
- Loses 2 electrons to form bonds

Transition Metals

- •Vary in oxidation states (no specific charge)
- Different number of ve⁻

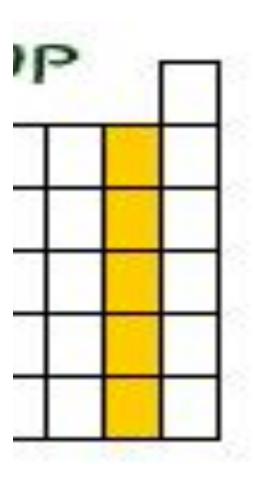
- Actinides
- •Also called "rare-earth" metals
- •"Pull out" rows in periods 6 and 7
- •Trans-uranium: elements larger than U that are man-made

Nonmetals Physical Properties

- Mostly gas at room temperature
- Poor conductors of heat and electricity
- Brittle
- Non-lustrous
- Low melting and boiling points

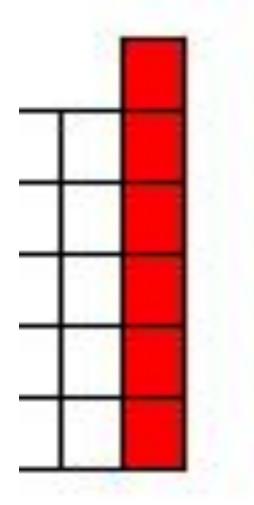
Non-metals Chemical Properties

Gain valence electrons


Ionic bonding

Shares valence electrons

Covalent bonding


Halogens (Nonmetals)

- Form salts when bonded to alkaline earth metals
- •Form acids when bonded to Hydrogen
- •7 valence electrons (-1)
- •Gains one ve⁻ (ionic bonding)

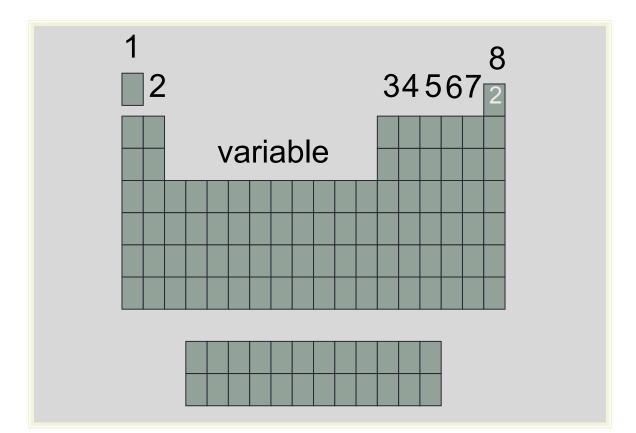
Noble Gases (Nonmetals)

- •Unreactive/inert
- Odorless and colorless (unless e⁻ are excited
- •8 valence electrons (2 for He)
- •Full octet (outer shell) or duet (for He)

Metalloids

						4.0
	5	6	7	8	9	10
	B	<u>C</u>	<u>N</u>	0	<u>F</u>	<u>N</u>
	10.81	12.01	14.01	16.00	19.00	20.
	13	14	15	16	17	11
	<u>A1</u>	Sii	P	<u>S</u>	<u>C1</u>	<u>A</u>
	26.98	28.09	30.97	32.07	35.45	39.
0	31	32	33	34	35	36
<u>n</u>	<u>Ga</u>	Ge	<u>As</u>	<u>Se</u>	<u>Br</u>	<u>K</u>
39	69.72	72.59	74.92	78.96	79.90	83.
8	49	50	51	52	53	54
<u>24</u>	<u>In</u>	<u>Sn</u>	Sb	Te	<u>I</u>	X
2.4	114.8	118.7	121.8	127.6	126.9	131
o	81	82	83	84	85	80
[g	<u>11</u>	<u>Pb</u>	<u>Bi</u>	<u>Po</u>	<u>A1</u>	<u>R</u>
0.5	204.4	207.2	209.0	(209)	(210)	(22
12	113	114 T Inco	115	116	1932	11

- Similar to both metals and nonmetals.
 - •Different conditions change properties.
 - •Form alloys with metals.
 - "Stair-step" elements

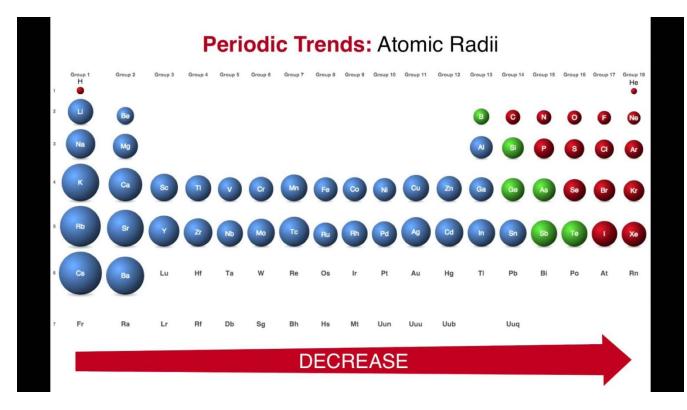

VALENCE AND TRENDS

Valence Electrons

•Valence electrons – Electrons in an atom's highest-numbered energy level.

•How many are in each of the groups on the periodic table?

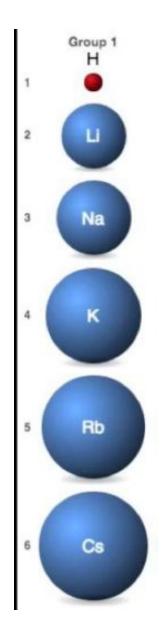
Valence Electrons Shortcut

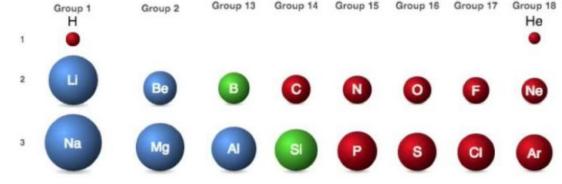

Octet Rule

•8 electrons in outer shell (or duet= $2 e^{-}$)

- •Atoms will combine to make the octet full, giving them the same electron configuration as the closest noble gas.
- •How many electrons do elements in each group want to gain/lose to bond?

Atomic Radii (AR)


•Center of the nucleus to edge of the electron cloud.


Atomic Radii (AR)

 Increases down a group (new energy levels added)

The closer the e⁻ are to the nucleus (p⁺), the stronger the pull on the radius (making the atom smaller)

Atomic Radii (AR)

- Decreases across a period
- •More p⁺ and e⁻ in the same energy level
- Increased # of subatomic particles cause an increase in attraction between the e- cloud and the nucleus (like magnets)

Electronegativity (EN)

- Ability to hold on to the e⁻ in an atom
- •Forms a negative ion (anion)

Does not include Noble Gases (they do not bond)

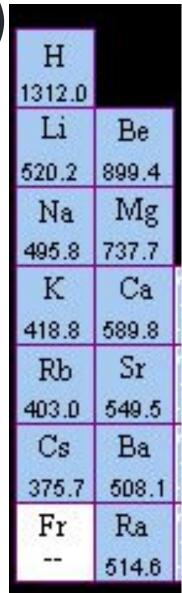
Electronegativity (EN)

- Decreases down a group
- •As you move down, space is added between e- and nucleus
- Lessens attractive force between p⁺ and e⁻
- •Harder for atom to hold on to its e⁻

N	0	F
3.0	3.5	4.0
Р	S	C1
2.2	2.6	3.0
As	Se	Br
2.2	2.6	2.8
Sb	Te	I
2.1	2.1	2.5

Electronegativity (EN)

- Increases across a period
- More e⁻ and p⁺
- •e⁻ are held more tightly because of an increase in attractive nuclear force


Н 2.1		ues					He
Li	Be	В	С	N	0	F	Ne
1.0	1.6	2.0	2.5	3.0	3.5	4.0	
Na	Mg	Al	Si	Р	S	C1	Ar
0.9	1.3	1.5	1.9	2.2	2.6	3.0	

Ionization Energy (IE)

- Energy required to remove valence e⁻
- •Forms a positive ion (cation)
- •A + E ----- A+ + e-

Ionization Energy (IE)

- Decreases down a group
- More energy levels, less attractive nuclear force
- •Requires less energy to remove e⁻

Ionization Energy (IE)

- Increases across a period
- e- are held tighter because of higher attractive nuclear force (increase in # of p⁺ and e⁻)
- •Requires more energy to remove e⁻

H 1312.0						H 1312.0	He 2372.3
Li	Be	В	С	N	0	F	Ne
520.2	899.4	800.6	1086.4	1420.3	1313.9	1681.0	2080.6
Na	Mg	Al	Si	Р	S	Cl	Ar
495.8	737.7	577.6	786.4	1011.7	999.6	1251.1	1520.5