# **Types of Chemical Reactions**

# **Five Types of Reactions**

- Synthesis (Combination)
- Combustion
  - $\circ$  Type of synthesis
- Decomposition
- Single Displacement
- Double Displacement

#### Synthesis Reaction

B

## Synthesis (Combination) Reactions

A reaction where two reactants combine to make a larger, more complex product

General Formula:  $A + B \rightarrow AB$ 

Examples:

 $H_2 + O_2 \rightarrow H_2O$  (combustion)

 $Na + Cl_2 \rightarrow NaCl$ 

Lithium reacts with nitrogen to produce lithium nitride

A

\*\*Combustion requires oxygen gas as a reactant\*\*

### **Decomposition Reactions**

General Formula:  $AB \rightarrow A + B$ 



Examples:

 $H_2O_2 \rightarrow H_2O + O_2$ 

$$ZnCO_3 \rightarrow ZnO + CO_2$$

Aluminum oxide decomposes into aluminum and oxygen

# Single Displacement Reactions

 $A + BC \rightarrow AC + B$ 

 $\rightarrow$  A C

#### General Formula: $A+BC \rightarrow AB+C$ (cation switch)

\*\*Lone metal must be more active than bonded metal\*\*

$$Y + XZ \rightarrow Z + XY$$
 (anion switch)

\*\*Lone halogen must be more active than bonded halogen\*\*



#### Single Displacement Reactions (use table given)

Cation Examples: Zinc reacts with hydrogen chloride

Magnesium reacts with copper (II) sulfate

Zinc reacts with Aluminum sulfate

Anion Examples: Sodium bromide reacts with chlorine

Sodium bromide reacts with iodine

Potassium chloride reacts with fluorine

## **Double Displacement Reactions**

General Formula:  $AX + BY \rightarrow AY + BX$ 

Examples:

$$\mathsf{AgNO}_3 + \mathsf{K}_2\mathsf{CrO}_4 \!\rightarrow\!$$

$$KI + PbNO_3 \rightarrow$$



\*\*Cations switch positions\*\*

